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ON THE COMBINED PERFORMANCE OF NON-LOCAL ARTIFICIAL BOUNDARY 
CONDITIONS WITH THE NEW GENERATION OF ADVANCED MULTIGRID FLOW 

SOLVERS * 

T. W. ROBERTS t, D. SIDILKOVER*, AND S. V. TSYNKOV§ 

Abstract. We develop theoretically and implement numerically a unified flow solution methodology 
that combines the advantages relevant to two independent groups of methods in CFD that have recently 
proven successful: The new factorizable schemes for the equations of hydrodynamics that facilitate the 
construction of optimally convergent multigrid algorithms, and highly accurate global far-field artificial 
boundary conditions (ABCs). The primary result that we have obtained is the following. Global ABCs do 
not hamper the optimal (i.e., unimprovable) multigrid convergence rate pertinent to the solver. At the same 

time, contrary to the standard local ABCs, the solution accuracy provided by the global ABCs deteriorates 
very slightly or does not deteriorate at all when the computational domain shrinks, which clearly translates 
into substantial savings of computer resources. 

Key words, factorizable scheme, pressure-Poisson formulation, multigrid methods, compressible flow, 
incompressible flow, conformal mapping, Fourier transform, mode selection, conservation on the grid, optimal 
convergence rate, exact solution, error profiles 

Subject classification. Applied and Numerical Mathematics 

1. Introduction. The subject of this paper is development of the joint formulation, combined im- 
plementation, and subsequent performance assessment for the exact nonlocal far-field artificial boundary 
conditions (ABCs) coupled with the new generation of multigrid flow solvers based on factorizable schemes 
for the equations of hydrodynamics. Both methodologies have independently proven efficient and promising 
for the numerical solution of different flow problems and thus it appears natural to try and analyze their 
performance if combined with one another. Accordingly, we organize the material as follows. First, we 
briefly review relevant results in the two aforementioned independent areas: Flow solvers and ABCs, and 
then formulate the motivation and objectives for the current study. Next follows the core of the paper — 
description of the algorithm and the set of numerical experiments. Finally, we discuss the results that we 
have obtained, as well as possible extensions for the future. 

1.1. Background on the scheme. To emphasize the advantages of the new generation of flow solvers 
that emerge nowadays, we first briefly review the history of developing the numerical methods for compress- 
ible flow computations. 
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The Pull-Potential equation is one of the simplest mathematical models describing the compressible fluid 

flow phenomena. Active research on numerical methods for solving this equation has begun in the early 70's 

with the work of Murman and Cole [1]. Numerical schemes were developed for two- and three-dimensional 

cases. Some research has also been done on applying the multigrid methods as a means to accelerate the 

convergence to steady state. 

The Puler equations constitute a more general model for the fluid flow since they account for the ad- 

vection of vorticity and entropy as well. The first rather efficient method for the steady-state computations 

using Euler's equations was developed in early 80's by Jameson and co-authors [2,3]; it still remains (with 

some modifications) widely used in modern computational practice. However, there was no obvious con- 
nection between this new Euler solver and the previously used Full-Potential solvers. The research on the 

Full-Potential solvers was effectively abandoned in its infancy in favor of the solvers for the Euler equations. 

On the other hand, it is becoming increasingly clear nowadays that the methods currently used for 

the steady compressible Euler (and Navier-Stokes) computations have severe limitations in terms of both 

computational efficacy and robustness. 

A major difficulty for the numerical treatment of compressible flow is the possible presence of shocks in 
the solution. It is well known that a scheme, which is both second order accurate and avoids undershoots 

and overshoots near discontinuities (which may trigger nonlinear instability), has to be nonlinear. Such 
a scheme has to incorporate the so-called high-resolution mechanism, i.e., a smoothness monitor, that is 

usually implemented in the form of a flux limiter. Initially, the schemes of this type were developed for 
one-dimensional case. Then, they were extended to multiple dimensions using a dimension-by-dimension ap- 

proach. However, these straightforward multidimensional extensions of high-resolution schemes have proven 
ineffective when applied for calculating the steady-state aerodynamic solutions, which are of great interest 

for applications. It turns out that the standard multidimensional high-resolution discretizations (obtained 
by a dimension-by-dimension extension) suffer from the following deficiency: The contribution of the high- 

frequency error components to the residuals of the discrete equations is very small, which translates into 
the poor stability characteristics of the steady-state discretization. This makes the construction of a good 

relaxation scheme, in particular, smoother for a multigrid procedure, inherently difficult, if possible at all. 

For example, Spekreijse [4] had observed that the Gauss-Seidel relaxation was unstable when implemented 
along with such schemes. Thus, the multigrid methods based on the Gauss-Seidel relaxation could not be 
used to accelerate the convergence to steady state. Instead, the multigrid solvers designed for routine use had 

to resort to a defect-correction technique or multistage Runge-Kutta relaxation, and as such their efficiency 

was relatively poor. 

A genuinely multidimensional advection scheme was constructed in [5,6]. The scheme was named "gen- 

uinely multidimensional" since it imitates well the anisotropy of the advection phenomena in two dimensions: 
The artificial dissipation is added only along the streamline, while the high-resolution mechanism affects sig- 

nificantly the cross-flow direction only. A key feature of this scheme is its two-dimensional limiter, i.e., the 

limiter-function of an argument that is the ratio of divided differences in two different coordinate directions. 

The scheme was formulated in the control-volume context for Cartesian grids and relied on the compact 
9-point-box stencil. The fundamental advantage of this approach is that the two-dimensional high-resolution 

mechanism does not damage the stability properties of the steady-state discretization. 

Generalization of these ideas to the systems of equations was not straightforward and took substantial 
time and effort. A generalization of this type that yields a robust scheme for the Euler equations, which is 

suitable for the computations of a wide range of flow regimes, was presented in [7]. Later it was described in 



more detail, including the implications for multigrid and three-dimensional extensions, see [8] and [9]. The 

key idea was not to try and directly apply the scalar advection scheme to the case of systems, but rather 

start from the scratch and use for the systems the same strategy that was employed to construct the scalar 

scheme. The resulting scheme for the Euler equations was shown to generate a very good quality solutions 

for subsonic, transonic, and supersonic regimes. A manifestation of "the genuine multidimensionality" of 

this scheme was rotationally-invariant form of its artificial dissipation. 

As in the scalar case, the fundamental advantage of the approach [7-9] is that its high-resolution mecha- 

nism does not damage the steady-state stability properties of the scheme. Similarly to the scalar case, it was 

demonstrated in [8,9] that the Gauss-Seidel relaxation is stable when applied directly to the resulting high- 

resolution discretization of the hyperbolic systems. This yields a very simple, efficient and robust multigrid 

solver for the compressible Euler equations suitable for the entire range of flow regimes. 

Besides the aforementioned difficulties in the iterative solution of the steady-state flow equations that 

originate from the poor sensitivity of the residuals to the high-frequency error content, and that have been 

largely overcome by introducing the genuinely multidimensional schemes, multigrid iterative solvers are 

prone to deficiencies of a different nature that can hamper the performance even if a good smoother is 
available. As outlined in [10], for the advection dominated problems the coarse grid provides only a fraction 
of the needed correction for certain error components. Unlike the previous frequency-based description, 
this time the "problematic" contributions to the error are the so-called characteristic components, see [10] 

(frequency-wise, they are typically mid-range). On the other hand, it is well known that the steady Euler 
equations can be factored into the advection and Full-Potential parts; the latter is of either elliptic or 

hyperbolic type depending on the flow regime (subsonic or supersonic, respectively). The aforementioned 

difficulty (insufficient coarse-grid corrections for characteristic error components) can be avoided (see [10]) 

by constructing a solver that distinguishes between the different factors of the system and treats each one 

appropriately. In the subsonic case, for instance, the advection factor can be treated by marching and the 

elliptic factor — by multigrid. The efficiency of such an algorithm will be essentially the same as of a multigrid 

solver applied to the elliptic part only. Such algorithms are referred to as "essentially optimal." An approach 
to separating the co-factors — the so-called Distributive Gauss-Seidel relaxation — was proposed in [10]. It 
was demonstrated in [11] that using this approach one can obtain an essentially optimal multigrid efficiency 

for a staggered-grid discretization of the incompressible Navier-Stokes equations; a similar observation was 

made earlier in [12]. 

Another way (alternative to the Distributive Gauss-Seidel relaxation) toward exploiting the ellip- 

tic/hyperbolic distinction in the governing equations and thus achieving the optimal multigrid efficiency 

is based on the well-known pressure formulation of the Euler equations, which also amounts to the factor- 

ization of the system into the elliptic and advection parts. A particular formulation of the scheme and the 
corresponding multigrid algorithm that employ this idea was proposed in [13]. This approach was further 

generalized in [14]; work [14] also contains an extensive set of numerical computations and more detail re- 
garding the implementation of the scheme. The main advantage of this approach is its simplicity, it can 

also be classified as Weighted Gauss-Seidel relaxation [10]. Subsequent work in this direction is presented 
in [15,16]. The limitation of this approach, however, is that it is not clear as of yet whether or not it can be 

generalized to the case of viscous compressible flows. 

It, however, turns out, see [17], that the idea of factorization that has successfully led to the construction 

of essentially optimal multigrid solvers in [10-16] cannot be applied to an important class of schemes that is 
routinely used for compressible flow computations — the shock-capturing schemes of all types, including the 



original formulation of genuinely multidimensional scheme, see [7-9]. As these schemes possess a collection of 
features that cannot be either compromised or traded for in computational practice, primarily the mechanism 

for handling discontinuous solutions, there is a need for discretization that would rather add the capability of 

factoring the governing PDEs to the existing properties of the scheme. As has been pointed out in [17], there 

is a certain freedom in the way how the multidimensional corrections are built for genuinely multidimensional 

schemes [7,8]. These extra freedom can be used to make the resulting scheme also factorizable, i.e., make 

it capable of reflecting the mixed nature of the governing PDEs. This means that the co-factors of the 

different type can be distinguished directly at the discrete level (while still keeping the multidimensional 
shock-capturing property). This, in turn, facilitates the construction of an optimally efficient multigrid 
solver through the design of a special Distributive relaxation. The scheme of this type was described in [18] 

with the emphasis on the subsonic case. The construction was later extended to the case of three spatial 

dimensions [19] and generalized coordinates [20]. Extending the approach to the transonic and supersonic 

regimes is underway. 

1.2. Background on the ABCs. Artificial boundary conditions furnish a widely used approach for 

the numerical treatment of boundary-value problems initially formulated on unbounded domains. These 
boundary conditions are typically set at the external boundary of a finite computational domain once the 

latter is obtained from the original unbounded domain by means of truncation. Implementation of the 

ABCs completes the "truncated problem" and therefore, makes it available for solution on the computer. 
Different authors have repeatedly shown both theoretically and experimentally that the overall accuracy and 

performance of numerical algorithms, as well as interpretation of the results, strongly depend on the proper 

treatment of external artificial boundaries. 

The choice of the ABCs is typically not unique. Clearly, the minimal necessary requirement of the ABCs 

is to ensure the solvability of the truncated problem. However, meeting this requirement only does not guar- 

antee that the solution found inside the computational domain will be anywhere close to the corresponding 
fragment of the solution to the original (infinite-domain) problem. Therefore, we must additionally require 

that the two solutions be in a certain sense close to one another on the truncated domain. Ideally, these two 

solutions coincide, which corresponds to the so-called exact ABCs. 

It turns out that in most cases, the exact ABCs are nonlocal, for steady-state problems in space and 
for time-dependent problems also in time. Besides, many methodologies for obtaining exact ABCs lack geo- 

metric universality as they rely on integral transforms along the boundary and the separation of variables. 
In practical computing, the aforementioned nonlocality of the exact ABCs is often translated into cumber- 

someness and high computational cost. Thus, along with the accompanying geometric restrictions, it may be 
regarded as a serious limitation. The alternative is provided by various approximate local methods, which 

typically meet the other usual requirements of the ABCs besides minimization of the error associated with 
the domain truncation. These other requirements are low computational cost, geometric universality, and 

implementation without difficulties. Still, the basic trend in terms of accuracy remains the following: Higher 
accuracy for the boundary procedure requires more of the nonlocal nature of exact ABCs to be somehow 

taken into account. 

In fact, almost any numerical algorithm for setting the ABCs can be thought of as a compromise between 
the two foregoing groups of requirements that in a certain sense contradict one another. Shifting the balance 

towards locality and practical efficacy often implies insufficient accuracy; shifting it to the other end, towards 
highly accurate nonlocal techniques, may often yield cumbersome and all but impractical algorithms. It is 

not surprising, therefore, that the treatment of external boundaries in modern production computations 



typically follows the first, local, path. In computational fluid dynamics (CFD), for example, only a few 

ABCs' methodologies out of the wide variety proposed to date can be regarded as commonly used tools. 

All of them are either based on essential model simplifications, e.g., local quasi-one-dimensional treatment 

in the vicinity of the artificial boundary, or obtained as a localization of some nonlocal ABCs. To meet the 

overall accuracy requirements when using such simple boundary procedures, one often has to use excessively 

large computational domains. 

An indepth review of different ABCs' methodologies that have been published in the literature over 

the recent years is available in the paper by Tsynkov [21]. Besides the general review, in this paper we 

focus on the group of approaches associated with the generalized potentials of Calderon's type and the 

difference potentials method (DPM) by Ryaben'kii [22-24]. The application of the DPM provides a new 

and very powerful vehicle for developing ABCs in different settings. In the framework of the DPM, the 
boundary conditions are obtained using the equivalent boundary parameterization of the entire variety of 

exterior solutions; the latter parameterization is built with the help of the so-called generalized Calderon's 

boundary projections. The DPM-based boundary conditions are usually global. However, when applied, 

e.g., to solving the steady-state external problems in CFD, they combine the advantages relevant to both 
global and local methods. In other words, the principal gain from using the DPM is that the method allows 

one to simultaneously meet the high accuracy standards of the ABCs and the requirements of geometric 
universality and easiness in implementation. In addition to the review [21], there are original publications on 
the DPM-based ABCs, we mention here only those closely related to the steady-state compressible viscous 

aerodynamics, see [25-33]. 

The DPM-based ABCs have been implemented along with the NASA-developed multigrid flow solvers in 

both two and three space dimensions. The investigated flow regimes range from the very low (incompressible 

limit) to transonic speeds, include different geometries, laminar and turbulent cases, and sometimes, relatively 

complex flow phenomena, like shock-induced separation and jets. Compared to the standard local boundary 

conditions, the DPM-based ABCs provide for much better accuracy and substantially smaller computational 

domains, significantly faster multigrid convergence [32], and improved robustness of the overall numerical 

procedure. We particularly emphasize the improved combined performance of global ABCs and multigrid 
flow solvers as similar behavior has also been observed by other authors [34-38]. 

In fact, the effect of convergence acceleration when the multigrid algorithm is supplemented by global 
ABCs [32] was a part of the reason for conducting the current study. Of course, there are significant 
differences. In our previous work we have used production flow solvers that by themselves have room for 
improving the performance, at least from the theoretical standpoint. In this work, we use the solver that has 

already been optimized for performance and thus its convergence rate cannot be improved. Therefore, we 

primarily aim at demonstrating the possibility to significantly reduce the size of the computational domain 

(and consequently, the grid dimension) while maintaining the solution accuracy, as well as optimal multigrid 

convergence rate. 

1.3. Motivation for the current study. As outlined above, the new factorizable schemes and cor- 
responding multigrid solvers, as well as global DPM-based ABCs, have independently demonstrated per- 
formance superior to that of the standard methodologies in various settings. Besides, in many cases the 
application of global ABCs has helped to speed up the multigrid convergence. Therefore, it seems most nat- 
ural to try and combine the two techniques — factorizable discretizations with advanced multigrid and global 
ABCs — with the hope of obtaining a joint methodology that would on one hand be capable of producing 

accurate flow solutions on domains of substantially reduced size (compared to what the standard methods 



allow, see, e.g., [26,31]) and on the other hand, will not hamper the unimprovable multigrid convergence 

rate displayed by the new type of solvers [14-16]. 

1.4. Specific objective. Using the simplest existing versions of both the factorizable scheme and 

nonlocal boundary conditions as a testing ground, we intend to thoroughly work out all the details of 

merging the two methodologies (from theoretical issues to the implementation) and then experimentally 

study the overall performance for a series of simple problems that allow for a direct comparison with the 

exact solution. We emphasize that "the simplest existing versions" does not always mean the latest most 

universal and advanced ones, but rather those that have been tested and that most easily lend themselves to 

the analysis by analytical means. Specifically, we employ the so-called pressure-Poisson formulation of the 

factorizable scheme [14-16] for calculating the two-dimensional inviscid incompressible fluid flow around an 

airfoil. Analytical solutions for such flows are readily available through the use of the conformal mapping 

technique. The global exact artificial boundary conditions are also constructed semi-analytically by means 

of the conformal mapping and Fourier transform along the boundary, with no explicit use of the DPM. The 

DPM itself will be used at a later stage, when the boundary conditions of the same quality are required for 

more complex settings. 

2.  Description of the algorithm. 

2.1. Discretization of the equations and multigrid algorithm. The algorithm used here is based 

on a special formulation of the flow equations that involves the so-called Pressure Poisson Equation (PPE). 

The initial version of the algorithm was presented in [13]. The PPE was derived on the differential level and 

then discretized. So were the corresponding boundary conditions. It was realized later that deriving the 

discrete PPE directly can simplify greatly the treatment of the boundary conditions and also introduce some 

desirable features into the scheme (like a certain conservation property that appeared to be crucial for the 

purpose of the current work, see Section 2.2.1). This algorithm is described in detail for both unstructured 

triangular and structured quadrilateral grids in [15]. Computational results obtained with this algorithm 

have been presented previously in [14,16]. In the current work, only structured grids have been used. Since 

some features of the discretization appeared to be critical for the purpose of this work, namely, constructing 

the global ABCs that allow to maintain the optimal convergence rates of the algorithm, we shall describe the 

discretization scheme and the algorithm in detail. The discretization is based on the incompressible Euler 

equations in primitive variables: 

du 
dx 

du + v— 
oy 

dp 
dx 

= 0, 

dv 
dx 

dv 
dy 

dp 
dy 

= 0, 

du 
dx 

dv 
dy 

-0, 

where u and v are Cartesian components of the velocity vector u in the x and y directions, respectively, 

and p is the pressure. The density is taken to be one. The Euler equations can be written in the vector form 

as follows: 

(u -grad)« + gradp = 0, (2.1a) 

divu = 0. (2.1b) 



We shall now derive the PPE formulation of the equations. We subtract from the momentum equation 

(2.1a) the velocity vector times the continuity equation (2.1b) and apply the divergence operator to the 

result: 

div (gradp + (u • grad)« — u div «) = 0. 

The previous equation obviously reduces to 

Ap= f = —div((u -grad)« — «div«). (2.2) 

The PPE formulation of the Euler equations is given by replacing the continuity equation (2.1b) by equation 

(2.2), i.e., by using the system (2.1a), (2.2) instead of system (2.1a), (2.1b); this replacement is obviously 

equivalent. 

The reason for introducing the new PPE formulation is that once we formally consider the transport 

coefficients in the momentum equation constant, i.e., use the equation 

(a -grad)« + gradp = 0, (2.3) 

where a = const, instead of (2.1a), then equation (2.2) becomes a Laplace equation 

Ap = —div ((a-grad)« — adiv«) = 0 (2.4) 

and decouples from the rest of the system. The momentum equation (2.3) can be looked at as a standard 

advection equation with known forcing function (pressure gradient). We emphasize that in this constant- 

coefficient case the right-hand side of equation (2.4), i.e., the term —div ((a • grad )« — a div u), is equal to 
zero no matter what the actual value of div « is. This property is crucial for solving discretizations because 
on the discrete level the value of div « is typically of the order of truncation error and not exactly equal 

to zero; moreover, when solving a discretization by an iterative scheme, initially the value of div u may 

simply be far away from zero. Note that in the general nonlinear case, for slowly varying velocity fields u 

(as opposed to constant a), the terms on the right-hand side of equation (2.2) can still be considered small 
(more precisely, of a lower order compared to the Laplacian) and thus regarded as subprincipal. Therefore, 
the coupling they introduce is weak, and consequently, equation (2.2) can be considered decoupled from the 

rest of the system for the purpose of constructing the relaxation procedure. 

We shall now discuss the issue of the boundary conditions for the pressure. The order of the PPE 

system (2.1a), (2.2) is higher (by one) than that of the original system (2.1a), (2.1b). Therefore, to ensure 

the well-posedness of the boundary-value problem, an extra boundary condition for the pressure is required. 

However, the new problem should still be equivalent to the original one. This implies that this additional 

boundary condition needs to be derived from the boundary conditions specified for the original problem and, 

possibly, differential equations of the original system. 
Consider a domain fi with the boundary dft. Integrating equation (2.2) over ft and applying Gauss' 

theorem, we obtain 

/ / div (gradp + (u • grad)« — « div «) dx dy = 

(gradp+ (u -grad)« - udivu)nds = 0, (2.5) 

an 



where n is a unit vector normal to the boundary and s is the arc length of dCl. A sufficient condition for 

equality (2.5) to hold is that at the every point (x, y) £ dtt the following is true: 

(gradp + (u ■ grad)u — udiv u)   = 0. (2.6) 

We emphasize that as we essentially require in (2.6) that the overall normal flux be zero at every point on 

9H, then we do not need to distinguish ahead of time between the outward and inward normals. In fact, it 

will be convenient to assume that the normal is always directed toward the center of curvature of dQ, this 

will allow us to use the Frenet formulae (see below). 

Introducing a local orthonormal coordinate frame (n, a), where s is a unit vector tangent to dQ, and 

the corresponding components un and uB of the velocity vector, we can rewrite equation (2.6) as follows 

— =-((«• grad)«) n + U„div« 

— {u • (u ■ grad)n) + «„divu. 

Relation (2.7) specifies a general Neumann-type boundary condition for the pressure. If, for example, a 

particular portion of the boundary under consideration dQ,' is a solid wall, then from the so-called tangency 

boundary condition for velocity: «n|en, = 0, we obtain 

dp      i     , ,N   \ // ,v   \ 2on lu|2 

— = (u-(u-grad)n) = «,((« -grad)n)s =us-gj = —^r 

where % = %{s) is the curvature radius of dQ!. Note, to obtain the last equality in the previous chain 

we have used the Frenet formulae for plane curves. Clearly, the physical interpretation of the boundary 

condition 

w-J:€ (2-8) 
on 7c 

is that the normal acceleration of the fluid particles moving tangentially to the wall is directed along the 

normal n, i.e., toward the center of curvature, and equal to the local, i.e., instantaneous, centripetal ac- 

celeration. This is because the momentum equation projected onto the normal direction would read that 

the acceleration of the fluid particles is equal to the minus normal pressure gradient. For a straight wall, 

boundary condition (2.8) obviously reduces to the zero Neumann boundary condition for the pressure: 

an 

Let us now turn to building the discrete scheme. The momentum equations are discretized using a 

standard first-order upwind-difference approximation to the advection operator and a second-order central- 

difference approximation to the pressure gradient. To prevent the resulting discretization from degeneration 

near stagnation points or across streamlines aligned with the grid, a regularizing artificial dissipation term 

is used. Considering the term «|^ in the rc-momentum equation, the difference operator is 

dhu      1 
U~dx  ~2h^Um+1/2'j ~ u"i+i/2,j)(um+i,j - umj) 

+ 2^("m-l/2,j + vm-l/2,i){Um,j ~ "m-l,j), 



where the superscript h denotes the discrete approximation to the corresponding differential operator, the 

quantities um±1/2,j are average velocity components given by 

um+l/2,j = ^{um+\,j + Ura,j), 

1, . 

and vm±i/2,j are artificial viscosity coefficients. Analogous expressions can be written for other operators: 
vS5T' uTte< and VT^- The artificial viscosity coefficients v„ ~" J-C~J ~~ 

vm±i/2,i are defined as 

"m±l/2,j = max (/xAMm±i/2,j, |«m±l/2,j |) , 

where 

*m,jji AMro+l/2,j = K+l, 

Aum_l/2,j = («m,j - «m-l,j), 

and /x > 1/2 is an adjustable coefficient, taken to be 0.7 in the current work.  This form of the artificial 

dissipation was presented in [16]. 
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FIG. 2.1.  Computational grid segment and o control volume. 

The discretization of the Pressure Poisson Equation is based directly on the integral formula (2.5), where 

the domain fi is taken to be the control volume Am>j with the boundary dAmj (see Figure  2.1): 

<f>   (gradp+ (u -grad)u — udiv«)nds = 0. (2.9) 

dAm,j 

Breaking the boundary of the control volume 8Amj into four parts: "south," "north," "east," and "west" 

faces, we can rewrite (2.9) in the following form: 

h[(Fm+l/2,j ~ Fm-l/2,j) + (Gmj+1/2 ~ Gmij_i/2)] - 0, 



where h is the mesh size, F„i±1/2,j are the east and west fluxes, and Gmj±i/2 are the north and south fluxes 

through the faces of the control volume Amj. The fluxes, in their own turn, are evaluated using the midpoint 

quadrature: 

Fm-l/2,j =h[(Pm,j -Pm-l,j) +«ra-l/2,j(«m-l/2,j+l/2 ~ «m-l/2,j-l/2) 

-«m-l/2,j(«'ni-l/2j+l/2 ~ Vm-l/2,j-l/2)] 

Gm,j-l/2 =h[(pm,j -PmJ-l) +«m,j-l/2(«m+l/2,j-l/2 - um-l/2j-l/2) 

-Vm,j-l/2(vm+l/2,j-l/2 - "m-l/2j-l/2)]i 

where the quantities with fractional indices are obtained using either linear or bilinear interpolation: 

Um-l/2,j = («raj +«m-l,j)/2, 

Mm-l/2,j-i = (um,j +«m-l,j +«ro,j-l +«m-l,j-l)/4- 

The fluxes .Fm+i/2,j and Gmj+i/2 are evaluated similarly. 

We now describe the derivation of the discrete PPE at a boundary point (m,0) (see Fig.2.2), assuming 

that no boundary condition on the pressure is prescribed there ahead of time. As in the continuous case, 

the discrete boundary condition for the pressure will follow from the existing physical boundary conditions 

and the discrete equations of the finite-difference scheme that we build. 

(m-1,1) (m,l) (m+1,1) 

(m-1/2,1/2)     I     (m+1/2,1/2) 
nofth 

-€» 

west 

(m- 1Q. 

Bm,Q 

,0)    south 

<>- 

east 

(m+1/2,0) 
6 

(m-1,0) (m,0) (m+1,0) 

FIG. 2.2. Boundary control volume. 

We rewrite equality (2.5) considering the control volume J5m,0 as the domain shown in Figure 2.2: 

<f>   (gradp+ {u -grad)u — udivu)nds = 0. (2-10) 

dB„ 

Again, as in the case of an internal control volume, we break the integral (2.10) into four parts — fluxes 

through the four faces of the control volume Sm,o, and approximate each one of them using the numerical 

quadrature 

h 
(-Fm+i^o - -^-1/2,0) + h{Gm,i/2 - Gmfi) — 0. (2.11) 

However, as the "south" face represents now a solid wall, we set the corresponding flux to zero: 

Gm ,0 = 0. (2.12) 
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This implies (see equation (2.6)) imposing the appropriate Neumann boundary condition on the pressure 

h-K— = -«m,o(«m+l/2,0 "~ vm-l/2fi) + %,oK+l/2,0 ~ «m-l/2,o)- (2-13) 

Expression (2.13) can obviously be interpreted as a finite-difference approximation of the equation 

dp       dv       du _ 
dy       dx       dx 

which is a specific version of equation (2.6) for the straight solid wall boundary y = 0. 

The flux Gm>i/2 in (2.11) is defined in the same way as for the internal control volume case. For the 

west flux we use the following formula 

■Pm-l/2,0 =y(Pm,0 ~ Pm-lfi) ~ Mm-l/2,o(wm-l/2,l/2 ~ "ra-l/2,o) 

+«ra-l/2,o(um-l/2,l/2 - «m-l/2,o)i 

and the east flux Fm+i/2,o is evaluated similarly to the above. 
This discretization is extended to the body-fitted grids (generalized coordinates) in the same standard 

way as any control-volume discretization. Therefore, we do not elaborate on this issue here. 

2.2. Construction of the ABCs. As follows from the previous section, there are three flow quantities 
to be determined throughout the computation — pressure p and two velocity components u and v. External 

boundary condition (i.e., closing mechanism for the discretized equations) will be needed for each of these 

three quantities. As the exact solution for the problem under study (incompressible inviscid airfoil flow) is 
known, we, for methodological purposes, will consider different computational strategies. First, we will be 
solving for the pressure only while keeping the velocity field on the grid as prescribed by the exact solution. 

Next, we will be solving for all three flow quantities. In both cases, we will compare the results obtained with 

the global ABCs against those obtained with the exact boundary conditions of the Dirichlet type (Dirichlet 
data at the external boundary taken from the exact solution) and on the other hand, against the results 
obtained with the standard local ABCs. Accordingly, we construct the global ABCs separately for the 

pressure and for the velocities. The boundary conditions are obtained using the separation of variables along 
the boundary; this approach is well-known and can be regarded standard for deriving global ABCs, see [21]. 

2.2.1. Pressure ABCs. In the pressure-Poisson formulation that we are using, the elliptic factor in 

the system is the Poisson equation for the pressure 

&p=f, (2.14) 

which is to be solved on the infinite domain exterior to the airfoil subject to the condition of boundedness 

of the solution at infinity and the Neumann boundary condition 

dp 
dn 

= i\> (2.15) 
r 

on the airfoil surface T. As mentioned in Section 2.1, boundary condition (2.15) is simply a reformulation 

of the momentum equation in the direction normal to the solid wall, the function ip represents centripetal 

acceleration (depends on the tangential velocity), the continuous explicit expression for ip is given in (2.8), and 
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the discretization is built as shown in (2.13). The only difference that to be emphasized between boundary 

condition (2.15) and considerations of Section 2.1, see formula (2.8), is that formerly we have considered 

the normal n always pointing to the center of curvature of F, whereas n in equation (2.15) is the normal 

to T with the fixed direction toward the interior of the airfoil (i.e., external normal for the flow domain). 
Therefore, the sign of the centripetal acceleration in the function ip will depend on whether the curve T is 

convex or concave at every particular location. Similarly to ip, the right-hand side / of equation (2.14) also 

depends on the velocities, the explicit expression for / is given in equation (2.2). Note, a more general and 

more recent formulation of the scheme involves the equation for the velocity potential rather than pressure 

as the elliptic factor. For incompressible flows, this equation is always homogeneous, which, in particular, 
makes the construction of the ABCs conceptually more straightforward. In the current formulation, as 

will be seen, taking care of the inhomogeneity / requires special attention. The corresponding experience, 

however, is going to be useful for the future analysis of the compressible case in a similar framework. 
Let us now denote by 0. the unbounded domain on which we are solving equation (2.14), then V — dQ. 

An obvious necessary condition for solvability of problem (2.14), (2.15) with p bounded at infinity is the 

equality of the sum of all sources inside the domain tt to the total flux through its boundary T, i.e., 

(I f<m= fipdr. (2.16) 
r 

As when constructing a standard analytic solution for the incompressible airfoil flow, for the purpose of 

constructing the ABCs we use the conformal mapping between the domain Q (exterior of the airfoil) of the 

variable z = x + iy € C and the exterior of the unit disk {\(\ > 11, ( = £ + it] e C}. Here, however, we will 

not need to know the explicit form of the conformal mapping, it will be sufficient to know that V is mapped 

onto the unit circle |C| = 1 and z = oo corresponds to ( = oo. (For uniqueness, we also need a third real 

parameter, which can, for example, be the value of arg^(co), which corresponds to prescribing the angle 
of rotation.) It is also important that the Laplace operator of (2.14) does not change with the conformal 

mapping. As concerns the notations, we will for simplicity keep the same symbols p and / for the functions in 

the new coordinates (£,7?), always assuming however that p = p(x(^,r)),y(^r])) and / = f(x(^,r]),y(^,Ti)). 

Note, the actual transform that we use is given by formula (3.1) in Section 3.1, this conformal mapping 

maps the exterior of the airfoil onto the exterior of the disk of radius 1.1 centered at (—0.1,0) (instead of the 

exterior of the unit circle). This is only a technical difference that will not affect the forthcoming analysis 

and conclusions. 
On the complex plane of the variable ( = £ + ir] we introduce polar coordinates (/>, 6) so that equation 

(2.14) and boundary condition (2.15) transform into 

i a ( dP\    l d2
P 

p-d-pVap) + ?W = M) (2-17) 

and 

dp 
'dp iK*), (2-18) 

respectively. The external artificial boundary on the plane C, will be a circle of radius R centered at the 
origin: p = R. As we will see in Section 3.1, the grid used for the numerical integration of the flow equations 

is obtained by transforming a polar grid from the plane C back to the plane z. This transform maps the 
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circle p = R onto the outer coordinate line of the curvilinear boundary-fitted conformal grid built around 

the airfoil. On the circle p = R: we need to construct the ABCs that would guarantee that the solution 

of equation (2.17) with boundary condition (2.18) found for 1 < p < R can be smoothly extended beyond 

p = R to the entire infinite domain p > 1 so that the extended solution satisfy the same differential equation 

and wall boundary condition and also be bounded at infinity. 
When constructing the ABCs, we will start with considering a particular case of f(p,0) = 0 for p > R. 

The motivation for that is twofold. First, it will always be the case for the new formulation of the scheme 

for incompressible flows. Second, in many other situations, the right-hand side /, although not exactly 

zero, decays sufficiently fast in the far field so that by neglecting it outside the computational domain (i.e., 

outside the artificial boundary) one does not introduce large errors. Experimentally, it is always possible to 
see whether or not the assumption of homogeneity in the far field is acceptable [26,27,30,31,33]. 

Basically, the case when the governing equations are homogeneous in the far field is central for most 

ABCs' methodologies, see [21]. For the particular formulation under study, having built the homogeneous 

ABCs we will also show how one can explicitly take into account the inhomogeneity /, see (2.17). 

The homogeneous boundary conditions are most easily obtained in the continuous formulation. We 
Fourier transform equation (2.17) in 0 and as f(p, 6) - 0 for p > R, arrive at the following family of ordinary 

differential equations 

1 d 
pdp\   dp 

dpk kK 
Pk = 0,   P>R,   * = 0,±1,±2,. (2.19) 

parameterized by the wavenumber k. For k ^ 0, the corresponding homogeneous equation from (2.19) has 

two linearly independent solutions: p^ = pw and pf] = p~w. Boundedness at infinity implies that all 
modes p^ for all k - ±1, ±2,... should be excluded, which is equivalent to the following countable set of 

conditions written in terms of the Wronskians: 

det 
Pk 

dpk 
dp 

vi2) 

dp 

fc = ±l,±2,. (2.20) 

Conditions (2.20) can, in fact, be imposed at any location p, at which equation (2.17) is homogeneous; setting 

(2.20) at p — R immediately yields 

dpk 
dp p=R 

= 0, ±1,±2,. (2.21a) 
p=R 

As concerns k = 0, the general solution of the corresponding homogeneous equation from (2.19) is C\ +C2 In P- 
Boundedness at infinity implies C2 = 0, which leads to the following boundary condition 

dpo 
dp 

0, (2.21b) 
p=R 

which can also be formally obtained from (2.21a) by letting k = 0. The countable sequence of relations 
(2.21b), (2.21a) for ifc = 0, ±1, ±2,... constitutes the full set of exact ABCs at the external artificial boundary 

p = R. Boundary conditions (2.21) are applicable provided that f(p,0) = 0 for p > R. They guarantee that 

the solution calculated for p < R can be smoothly and uniquely complemented to the entire infinite domain 

so that the complement solve equation (2.17) and be bounded at infinity. 
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Note, after Fourier transforming back to the physical space, the ABCs obtained by the separation of 

variables along the boundary typically become nonlocal (e.g., ABCs (2.21)). Most often, these ABCs (in the 

physical space) are represented by means of pseudodifferential operators, see [21]. For the particular case of 

(2.21), however, a representation via singular integrals is also available; it was obtained by Loncaric in [39] 
9 

and involves the kernel   In sin - . 

Let us now consider the inhomogeneous case, when, generally speaking, f(p, 9) ^ 0 for p > R. After the 

Fourier transform in 9 we obtain (cf. (2.19)) 

ld_ ( dpk\ 
p dp \P dp ) 

jPk = fk(p),   P>1,   fc = 0,±l,±2,... . 

To discuss the solvability issues, we will also need to Fourier transform (2.18), which yields 

dp 
= 4>k,    fe = 0,±l,±2,... . 

(2.22) 

(2.23) 
P=I 

We start with the analysis of the case k = 0, which differs from the analysis for all other fc's.  In Fourier 

space on the new plane £, the solvability condition (2.16) obviously transforms into 

+oo 

/ fa{p)pdp 
dpp 
dp 

= $o • (2.24) 
P=I 

We now integrate equation (2.22) for fe = 0 from p = 1 to p = R and obtain: 

R R 
dpo r«(pf-)dp=pf   -f-   =[f0(p)pdp. 

J dp\   dp J dp p=R     dp p=1     J 
(2.25) 

Combining formulae (2.24) and (2.25) immediately yields 

dpo 
dp p=R 

/ fo(p)pdp-rpo. (2.26) 

Inhomogeneous relation (2.26) will replace homogeneous relation (2.21b) for k = 0 in the countable sequence 

of boundary conditions in Fourier space.  Note, if we assume for a moment, as before, that fo(p) = 0 for 
/R r+oo 

fo{p)pdp = /       fo(p)pdp, and because of (2.24) the right-hand side of (2.26) 

vanishes and condition (2.26) transforms back into (2.21b). 

Let us now emphasize a very important circumstance. Specifying Neumann boundary conditions for k = 

0 on both edges of the interval (i.e., for p = 1 and p = R) may, generally speaking, be problematic from the 

standpoint of solvability. Indeed, in the fully homogeneous case neither of these boundary conditions admits 

the logarithmic mode and both admit the constant mode. Thus, pQ = const will solve the homogeneous 

problem 

\d_( dp0\ 
pdp\   dp J 

dpo 
dp 

P=I 

0       ^ 
'      dp 

= 0 
p=R 
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Consequently, the corresponding nonhomogeneous problem will not be solvable for any right-hand side, and 

in case it is solvable, the solution will not be unique. The type of the boundary conditions (Neumann) for 

k = 0 cannot be changed/relaxed because at both p = 1 and p = R these boundary conditions are obtained 

from the physical considerations. Therefore, some additional solvability conditions are introduced that limit 

the general admissible scope of the problem data. 
As we have seen, for the original problem on the semi-infinite line p > 1 the solvability condition is 

required specifically because the boundary condition on the solid wall has Neumann's type. This solvability 

condition is given by (2.24); relation (2.24) actually restricts the class of admissible right-hand sides /0 

provided that i>0 is given. The ABCs set at a finite location p - R are not independent from the interior 

problem; it is rather the opposite — the problem with these ABCs fully inherits the properties of solvabil- 

ity/insolvability of the original problem. As has been shown for the problem with the ABCs, the solvability 

condition (2.24) is rewritten in the form (2.26), which in the homogeneous case simplifies to (2.21b). A 

convenient circumstance is that in the formulation that involves the ABCs the solvability condition (2.26) 

(or (2.21b)) does not complement all other conditions of the problem, it is rather incorporated naturally (as 

a particular relation in the Fourier space for k = 0) into the countable family of boundary conditions that 

we build in Fourier space for k = 0, ±1 ± 2,  
Clearly, the homogeneous boundary condition (2.21b) can be interpreted as zero flux through the outer 

boundary and thus it corroborates the natural physical meaning of the solvability condition. When a non-zero 

right-hand / side extends beyond p = R, we replace (2.21b) with the nonhomogeneous boundary condition 

(2.26) to ensure the solvability. The meaning of (2.26) is, of course, the same — it is conservation, and the 

difference compared to (2.21b) is that now because of a different right-hand side the flux through the outer 

boundary should no longer be zero. The important thing is that the inhomogeneity on the right-hand side 

of equality (2.26): 

//•-l-oo 

f0(p)pdp-4>o= h{p)pdp (2.27) 
l 

cannot be neglected even if f0{p) is small for p > R, see (2.27). As has been mentioned, the latter is often 
the case, but disregarding the aforementioned inhomogeneity will make this problem unsolvable rather than 
simply introduce a small error into the boundary conditions and thus into the solution.   In many other 

situations (see, e.g., below) introducing such errors is not dangerous from the standpoint of solvability, and 
the extent of the corresponding solution deterioration can always be assessed aposteriori (see [21]). In the 

particular case under study, strict conservation of type (2.26) has to be enforced not only in the continuous 

framework, but also on the grid; this issue will be discussed later. 
For all other modes except k = 0, i.e., k = ±1, ±2,..., it is easy to see that the homogeneous problem 

ld_ f dpk\ 
pdp V  dp ) 

*2-       n 

dßk 
dp 

= 0,     f = 0 
p=R 

+   RPk 

p=R 

has only trivial solution (indeed, both p^ and pf are eliminated by the boundary conditions) and therefore 
the corresponding nonhomogeneous problem is solvable for any right-hand side (inhomogeneities, i.e., right- 

hand sides can be introduced into the boundary conditions themselves as well).   Therefore, the situation 
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here is entirely different compared to the case k = 0. Namely, boundary conditions (2.21a) are exact when 

the far field is homogeneous, f(p,9) = 0 for p > R. If a far-field inhomogeneity is introduced, its effect 

can, in principle, be incorporated into these boundary conditions making them nonhomogeneous as well. 

However, when the far-field inhomogeneity is small it can be neglected, which will not give rise to any 

solvability concerns for k ^ 0, and the corresponding error in the numerical solution will then be estimated 

by aposteriori numerical checks, see, e.g., [26,27,30,31,33]. 
Note, the incorporation of inhomogeneity into the boundary conditions (2.21a), k ^ 0, is not going 

to be as easy as obtaining relation (2.26) instead of (2.21b). A general "conceptual" recipe for such an 

incorporation can be found, e.g., in [23]; but it basically amounts to integrating (essentially, solving) the 

nonhomogeneous differential equation on the infinite portion of the domain that is being truncated and 

replaced by the ABCs. This is exactly what we are trying to avoid; besides, it is not feasible at any rate 

unless we already know the solution or at least the closed form representation for f{p,0) over the infinite 

domain. 
As for the methodology that we are currently describing, we neither want it to rely heavily on the 

availability of the exact solution nor we pursue the goal of assessing the performance of the ABCs in the regime 
when their exactness is "contaminated" by some small far-field inhomogeneities that are being neglected. As 
has already been mentioned, we rather aim at demonstrating that the optimal convergence of the solver can be 
recovered with the global ABCs in the simplest (i.e., ideal) regime. Therefore, in the numerical experiments 

below we study the non-lifting flows so that the entire inhomogeneity of the problem is concentrated on the 
zeroth Fourier mode k = 0 only. Even for a simple lifting airfoil flow, we would have already had to either 

neglect the far-field inhomogeneities for k = ±1 and thus study the overall performance of the algorithm 
affected by this approximation as well, or alternatively, use the explicit form of the exact solution, substitute 

it into the left-hand side of (2.21a) for k = ±1 and this way create the correct inhomogeneity for the boundary 
conditions. In this paper, we are doing neither of the above. As concerns studying the effects of dropping 

the far-field inhomogeneities, an investigation of this type for the more general compressible formulation of 

the scheme is likely to become a subject of our future work. 
To derive the ABCs for the finite-difference scheme we follow a procedure similar to the one we used 

for obtaining the continuous boundary conditions. The grid on the plane £ is a polar grid uniform in 8 and 
stretched in p; when mapped back onto the plane z it yields a curvilinear O-type grid fitted to the airfoil 
surface. The grid has J cells in the radial direction with the nodes pj, j = 0,... , J, so that p0 = 1 and 
Pj = R, and M cells in the circumferential direction with the constant grid size AÖ = 27r/M and nodes 

9m = mA6, m — 0,...,M; due to periodicity the angular directions 90 = 0 and 6M — 2n coincide. 
A second order accurate discretization of the flow equations that we use is outlined in Section 2.1. It 

is a finite-volume discretization performed directly on the curvilinear body-fitted grid in the physical plane 
z. It is easy to check however, that if the exact same finite-volume approach was applied to the polar grid 
on the model plane £, then for the pressure Poisson equation (2.17) it would result in the following natural 

central-difference discretization: 

1      1      (               Pm,j+1 - Pm,j Pm,j — Pm,j-l\    . 
ft+1/2        A „...,. Pi-W        An.    ,,„ + 

(2.28) 

~f. A02 -Jm,j, 

where pj+1/2 = (pj+i + pj)/2, Pj-1/2 = {pj + Pj-i)/2, Apj+i/2 = Pj+i - Pj, ^Pj-1/2 = Pj - Pj-i, and 

16 



Apj = (A/9j_!/2 + Ap_7+i/2)/2.   Finite-difference equation (2.28) will be used for deriving the discrete 

counterpart to the nonhomogeneous boundary condition (2.26). 

Along with the fully discrete equation (2.28) we will also consider a semi-discrete form of the homogeneous 

equation in the far field: 

Introducing the direct discrete Fourier transform 

fc = iE*»e""mA">   * = -f+ 1'-'T' (2-30a) 
m=0 

and inverse discrete Fourier transform 

Af/2 

pm=      £      ÄeifemAe,    m = 0,...,M-l, (2.30b) 
fc=-JW/2+l 

on the grid, we reduce (2.29) to 

1 d  ( dpk\     a\*      n      , M     . M 
pdp Y dp)     f*       ' 2   '    '■■•' 2 

(2.31) 
2        4       2 kA8 

at = -r-^rsin  ——. K     AÖ2 2 

For any particular k, equation (2.31) looks very much like (2.19) except that k2 is replaced by a\. To 

obtain the boundary conditions, we introduce a row of ghost nodes with j = J + 1, pj+i = pj + Apj+1/2 = 

R+ApJ+i/2, and first write down the system of equalities similar to (2.21a) but at the location p — pj+1/2 = 

R + Apj+i/2/2 rather than p = R (k / 0): 

dpk 
dp H Pk 

P=PJ+l/2        PJ+1/2 

M M 
= 0,        fc = -Y + l,...,-l,l,...,y. (2.32) 

Then we discretize (2.32) consistently with the central-difference discretization (2.28), which yields 

Pk,j+i-Pk,J+    K|   fe,W+PM=0[        fe = -^ + l>...,-l,l ^, (2.33) 
Apj+1/2     .   PJ+I/2 2 2 2 

or 

(\0-k\    ,      PJ+l/2   \ . (Wk\ PJ+I/2   \ 
»-(T^ä^J^HT-äWJ- (234a) 

M   , , -,       M 

* = -y + l,...,-l,l,...,y. 

The remaining mode fc = 0 is treated separately as before; in the homogeneous case instead of (2.21b) we 

have: 

PO,J+I -Po,J _ Q 

Apj+1/2 
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or 

PO,J+I = PO,J- (2.34b) 

Note, as in the case of the continuous boundary conditions (2.21b) and (2.21a), relation (2.34b) can also 

be formally obtained from (2.34a) by substituting ak - 0 for k = 0. In the physical discrete space we can 

rewrite the system of equalities (2.34a), (2.34b) as one matrix relation 

PJ+I = F-Miag{Ä} Fpj = Tpj, (2.35) 

where 

ßk = V  2        ApJ+1/2J    \  2        ApJ+1/2; 2 
M 
2 ' 

(2.36) 

A> = 1, 

pj and pj+i are the M-component vectors that contain the grid values of p for the last row of nodes j = J 

and the row of ghost nodes j — J + 1, respectively, and F'1 and F are M x M matrices that denote the 

inverse (2.30b) and direct (2.30a) discrete Fourier transforms, respectively. 
Note, unlike in many cases from our previous work (see, e.g., [25-27,30,31,33,40]), boundary condition 

(2.35) is not built so that to guarantee extension of the interior solution beyond the artificial boundary as 

an exact solution of the homogeneous finite-difference equation (equation (2.28) with fmj = 0). This would 

require obtaining the exact discrete counterparts to the two modes py and p\2> in polar coordinates on 

the stretched radial grid, which is not an obvious task. Thus, by considering the semi-discrete equation 
(2.29), deriving the corresponding continuous boundary conditions (2.32), and then approximating them 

with finite differences (2.33) consistently with (2.28), we come here as close as we can to building the true 
exact finite-difference ABCs. However, as we always maintain the second order of accuracy for our discrete 
approximations, both for the differential equation itself and for the boundary conditions, we do not expect 

that this approach may be problematic form the standpoint of final accuracy. Our numerical experiments 

corroborate that the ABCs that we construct this way are capable of producing very high accuracy, quite 

comparable with the one obtained when the ABCs were built based on the exact solution, see Section 3. 

Moreover, it is obvious that for small Ad and small k (long waves) we have a\ « k2, see formula 
(2.31). Therefore, the difference between the truly continuous boundary conditions (2.21a) and semi-discrete 
boundary conditions (2.34a) is not going to be large unless all modes including high frequencies on the grid 
(i.e., large k's) are well represented in the solution. Experimentally we have observed that replacing \ak\ 

by simply \k\ in relations (2.34a) indeed does not cause any noticeable changes in the numerical solution 

when calculating the non-lifting airfoil flows. (The exact solution for such flows does not contain any angular 

modes beyond |fc| = 2.) 
Let us point out some easy-to-see properties of the matrix T of (2.35). First, this matrix is circulant: 

T = 

to tM-1 tM-1 

tl to tM-1 

tt h to 

tM-1     tM-2     tM-3 

tl 

t2 

*3 

to 

(2.37) 
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This follows immediately from the periodicity in circumferential direction. Moreover, the matrix T is 

symmetric because tj = tM-^j for j = 1,... , M — 1; these equalities simply reflect the fact that the response 

to a point source on the circular boundary will be the same in both clockwise and counterclockwise directions. 

Finally, all eigenvalues ßk of the matrix T, see (2.36), are non-negative and moreover, 0 < ßk < 1 for 

k = -M/2 + 1,... , M/2. Indeed, as mentioned in Section 3.1 below, the grids that we actually use for 

our computations are stretched in the radial direction so that to maintain the cell aspect ratio equal to 

one throughout the entire domain. This, in fact, means that pj+iß/^-pj+iß — 1/A#, and recalling the 

definition of a/t, see (2.31), we conclude that the first expression in brackets in the definition of ßk, see (2.36), 

is always non-positive. Thus, ßk > 0. The second inequality for the magnitude of ßk follows directly from 

formula (2.36). 

The aforementioned properties may be beneficial from the standpoint of multigrid analysis, as well as a 

certain type of implementation, see Section 2.3. However, it yet remains to be seen whether similar properties 

can be established for more general cases. 

When a far-filed inhomogeneity is present, we need, as has been shown, special treatment for the zeroth 

Fourier mode k = 0. First, we write down the one-dimensional finite-difference equation 

— -—   Pj+i/2—7 PJ-
1
/

2
'~AZ     ~ t°'i> (l-dti) 

Pj A/3j  V APj+l/2 Apj-i/2     ) 

which one can obtain directly from (2.28), and notice that p0j = const is a solution to the homogeneous 

counterpart of (2.38). This is the only case an exact solution to the discrete homogeneous equation is easy to 

find. The second linearly independent solution to (2.38) has to grow for large j's as on any finite domain it 

should approximate ln/>; this second mode is prohibited by boundary condition (2.34b) for the homogeneous 

case when f0j — 0 for j > J. Let us now perform summation by j from j = 1 to j = J on both sides of 

(2.38), this discrete operation is an analogue of the integration (2.25): 

j    z - „ 
■sr^ [ Po,j+i-Po,j      „ Po,j ~ Po,j-i 

g V^    APj+1/2    ~ ^-1/2    APi_1/a    , 
i=i 

(2.39) 

PO,J+I - PO,J Po.i - Po,o     v^ „ A „ i 
PJ+I/2 7- Pl/2~Ä~:  =  /.Pj^PjJOJ- 

&PJ+1/2 APl/2 p[ 

From (2.39) we conclude that we need to replace (2.34b) by the following nonhomogeneous boundary condi- 

tion: 

J 

PJ+1/2—T- =2^Pi&Pih,i + Pi/2—7- . (2-40) 
^Pj+i/2        rr[ &P1/2 

which is a discrete counterpart to (2.26). 

Let us now note that fmj has a rather special structure — it can be represented using the divergence 

theorem as fluxes through the boundary of a control volume Amj shown on Figure 2.1, see the discussion 

in Section 2.1. On the polar grid, the area of this control volume is 

^+1/2 ~ Pj-1/2) = 27rftAfr 

M M     ' 

Now, applying the divergence theorem, we obtain 

frrpjAft-       ._An.(Ff _Ff )+(^Pi+HlGf 2*Pi-i/2cf \ (2A1) 
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Notice, unlike in Section 2.1, the fluxes F^l±1/2 ,• and Gm ,±1/2 
m equation (2.41) have the superscript /; 

this emphasizes that they take into account only the contribution of the actual right-hand side / of equation 

(2.2). This means that instead of evaluating integral (2.9) using the control volume approach, we evaluate 

a similar integral with gradp taken out and thus only the velocity's contribution left. 

Calculating now the zeroth Fourier component of /mj-, see equation (2.30a), and using equation (2.41) 

we obtain 
M-l 1 / M-l M-l \ 

•^ = M  ^ fm'j = MO-AO-      Pj+1/2  5- G^.J+l/2 ~ ^"-1/2  X) Gfm,j-l/2     ■ 
m=0 H3     Hl    \ m=0 m=0 / 

Substituting the previous expression into (2.40) yields 

M-l M-l 
P0,J+1 ~ P0,J      PJ+1/2  V^ nf Pl/2 sr^ rt ,  „     Po,i - Po,o (n A0s PJ+1/2    ApJ+1/2     = ~M~ E GL,J+i,2 - -M  2 G-,m + 0^-^r- (2-42) 

Clearly, the discussion in Section 2.1 and more precisely, the requirement (2.12) of zero flux through the 

boundary that leads to the boundary condition (2.13) on the solid wall, implies that 

M-l 

Therefore, we obtain 

1    M-l 

Relation (2.40) and its particular form (2.43) represent the exact conservation on the grid that is required 

for the solvability of the discrete problem. The inhomogeneity on the zeroth Fourier mode, see (2.43), can 

also be included into the boundary condition in the matrix form, which will then read 

PJ+r = TPJ + £"±&-f,Jt (2.44) 
^"PJ+1/2 

where /.,j is the total flux due to the forcing term through the outer faces of the control volumes centered 

at the J-th gridline. 

From the standpoint of implementation, boundary conditions (2.35) or (2.44) are matrix-vector relations 

that connect the values of the solution p on the last row of grid nodes j — J and the row of ghost nodes 

j = J +1. These boundary conditions are equivalent to the possibility of smoothly and uniquely complement 

the solution from inside the computational domain to its infinite exterior so that the extension solve the entire 

original problem. The unique choice of such boundary conditions (within the accuracy of finite-difference 

approximation) along with the existence of the conformal mapping between the planes z and C, imply that the 

discrete ABCs (2.35) or (2.44) obtained originally for the plane £ can be used on the plane z with no changes, 

simply as the equalities connecting the values of the solution on two rows of the grid through matrix-vector 

multiplication. This property is fully corroborated experimentally, see Section 3, even so the finite-difference 

equation for the pressure on the actual body-fitted grid may differ from equation (2.28) in the sense that 

the stencil may contain more than five nodes for those cells that noticeably differ in shape from rectangles. 

(In contrast to (2.28), for strongly skewed cells diagonal nodes may be present with small coefficients.) 

We also note that even provided that the problem is solvable, ensuring the uniqueness of the discrete 

solution requires special attention. Indeed, as we have seen an arbitrary constant can be added to the 

solution on the zeroth Fourier mode. The issue of guaranteeing the uniqueness throughout the computation 

is touched upon in the implementation Section 2.3. 
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du dv 
dx ~dy' 
du dv 
dy dx 

2.2.2. ABCs for velocities. It is known that for the particular case under study the quantities u and 

—v satisfy the Cauchy-Riemann equations: 

(2.45a) 

Let us first note that equations (2.45a) imply that both u and v separately satisfy the Laplace equation. 

Thus, we essentially could have applied the same homogeneous boundary condition that we have constructed 

for p, see (2.35), to velocities as well. However, we will rather construct the ABCs for velocities directly on 

the basis of the Cauchy-Riemann system. This will simplify the analysis for the zeroth Fourier mode, which 

was "problematic" in Section 2.2.1. 

As before, we will construct the ABCs as vector relations on the model plane f and then use them 

with no changes on the physical plane z. Also as before, we will retain the same notations u and v for the 

functions in the new coordinates (£,77), always keeping in mind, however, that u = u(x(^,r]),y(^,ri)) and 

v = v(x(£,r)),y(£,ri)). On the model plane £ = £ + irj the quantities u and -v also satisfy the Cauchy- 

Riemann equations: 

(2.45b) 

The boundary conditions for velocities will actually be constructed on the basis of equations (2.45b). 

Let us introduce polar components of the velocity vector u 

u0 = u cos 9 + v sin 6 , 
P (2.46) 

Uff = — u sin 0 + v cos 9 , 

and rewrite the Cauchy-Riemann equations (2.45b) in polar coordinates 

d{pup) _    dug 
dp     ~~W ' 

(2.47) 
djpue) _ dup_ 

dp d9  ' 

Denote q — [up,ugY and represent (2.47) as a matrix equation 

where 

du dv 
dt~ dr) 
du dv 
dr] dr 

0  -1 

1     0 

For the Fourier coefficients qk = qk(p) we obtain from (2.48): 

d(pqk) 

(2.49) 

dp 
= ikAqk,    fe = 0,±l,±2,... . (2.50) 
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We now diagonalize the matrix A of (2.49) and obtain: 

AK = KA , 

where 

A = 
i    0 
0   -i 

K = 
1     1 

—i    i 

Introducing Sk-K  xqk *=> Qk = Ksk, we get instead of (2.50): 

d(ph) 
dp 

= ikAsk ,    fc = 0, ±1,±2,.. 

Equation (2.53) immediately yields 

a* 
C-Wp-fc-i 

(2.51) 

(2.52) 

(2.53) 

(2.54) 

where c[h^ and C^ are constants (different for different fc's). Going back from representation (2.54) to the 

old variable qk, we have (the matrix K is given by (2.52)): 

qk = Ksk - 
c(*)p-*-i + CWp»-i 

«flfc 

Finally, introducing the inverse to the transformation (2.46) 

u — up cos 6 — ug sin 9 , 

v = Up sin Ö + Wf? cos 9 , 

and substituting the expressions 

u = J2^eike , v = Y,vke
ikB , 

*v = E ^c<M'   us = Y, Ü9*eik6' 
k k 

into (2.56) we obtain 

X>e^ = ^V (ei(ft+1)" +<A>-W) - ^E^ (ei(fc+1)S -c«*-1") , 
k k k 

£**"' = ^I>« (e«W)' -««*-«•) + ^E*» (e^1)' +6«»-1)')  , 

which implies 

i „ 1. 
Uk = öuPfc-i + öw««.-i + öw^+i ~ öu»*+i 

«* 
-i „ i „ 

2   "-1     2 

The last step is to substitute (2.55) into (2.57) 

Wpfc-i + öu«"-i + ö*V+i + öU9*+i 

(2.55) 

(2.56) 

(2.57) 

(2.58) 
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Representation (2.58) is valid for all ft's including k = 0. Contrary to the general solution of the Laplace 

equation for k = 0: C\ + Ci lnp, see Section 2.2.1, we do not have a growing logarithmic mode in represen- 

tation (2.58) for k = 0. This constitutes a principal difference compared to the previously analyzed case and 

also gives the primary reason why we construct the ABCs for velocities directly from the Cauchy-Riemann 

system (2.45b) rather than first reduce it to two separate Laplace's equations for u and v. 

The physical boundary conditions for velocities at infinity are obvious: the vector field u has to approach 

its free-stream value «o as |z| —>■ oo. As C(°°) = °°> the value of u at infinity on the model plane C, is also 

wo and thus the boundary condition at infinity on the plane C, is the same as on the plane z: u —> Mo as 

ICI —> oo. This, in particular, implies boundedness of the vector field u at infinity. Then, from formula 

(2.58) we conclude that we need to require that cf+l) = 0 for k > 0 and C^_1) = 0 for k < 0; for k = 0 

both Ci and C\, are allowed. Therefore, for k ^ 0 in the continuous framework we obtain analogously 

to (2.21a): 

duk 

dp 

dvk 
dp p=R        U 

= 0,        fc = ±1,±2,... 
p=R 

= 0,        fc = ±l,±2,... 
p=R 

(2.59) 

and in the discrete framework, analogously to (2.34a): 

(\k\ PJ+1/2   \   _ f\k\ PJ+1/2 

V 2       ApJ+1/2J V 2      AA/+i/2 

(\k\    ,      PJ+1/2   \ „ (\k\ PJ+1/2 
Vk,J+i    V + -r —    = -Vk,j    -r- - -r-—— 

V 2       &PJ+1/2J V 2       ApJ+1/2 

M   , *=-T+l... ,-1,1,.. M 
•' 2 

M   , 
*=-T+l... ,-1,1,.. M 

■'Y 

(2.60) 

The only difference between (2.60) and (2.34a) is that in (2.60) we have \k\ instead of \ak\- As has been 

shown, ay. in (2.34a) comes from the central-difference second-order discretization of the Laplacian (2.28) 

that we do not use for velocities. It has also been mentioned that for small k's (long waves) the difference 

between using \k\ and |ajt| even in (2.34a) is not noticeable. 

For k = 0, the difference between the boundary conditions for velocities and the corresponding boundary 

conditions for the pressure is significant. As we do not have to worry about cancelling the growing logarithmic 

modes for velocities, and as we know the free-stream value of the velocity vector «o = [U, V"]', we simply 

have 

Ü0'J+1 = U ' (2.61) 
VO,J+I = V . 

The meaning of boundary conditions (2.61) is transparent — the correct value of the solution at infinity, 

i.e., the correct constant, is picked up on the zeroth Fourier mode, all other Fourier modes in the solution 

vanish at infinity. 

Formulae (2.60) and (2.61) constitute the global ABCs for velocities. It is interesting to note that as the 

momentum equations are actually integrated by means of downstream marching, the information provided 

by boundary conditions (2.60), (2.61) is used only on the inflow portion of the artificial boundary. As, 

however, the computations show, the values of u on the outflow portion of the boundary obtained with the 

global boundary conditions very well agree with the actual values obtained by the downstream integration 

through the domain, see Section 3.4. 
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2.3. Combined formulation and implementation. The values of the solution at the ghost points, 

i.e., on the (J+ l)-th gridline, are obtained by applying the ABCs of Sections 2.2.1 and 2.2.2 to the current 

approximation on the outer boundary, i.e., on the J-th gridline. This is followed by a relaxation sweep. The 

aforementioned two steps form the combined relaxation sweep. 

We apply a standard multigrid algorithm known as the Full Approximation Scheme (FAS). The only 

"non-standard" aspect that requires special attention is the application of the ABCs for the pressure on the 

coarser grids, because these ABCs involve the conservation issue outlined in Section 2.2.1. 

The pressure equation on the finest grid can be written as follows 

Lhph = fh, 

where Lh is the discrete Laplacian and fh is the forcing term as defined earlier.   The fine grid equation 

residual is given by 

rh = jh - Lhph. 

Then, the FAS coarse grid equation is 

where 

LHpH = fH, 

fH = LHlffph+lffr\ 

and iff and iff are the restriction operators. The operator iff is a standard injection operator, and the 

operator Iff is also a standard Full-Weighting operator. 

Let us note that since iff is a "conservative" operator, the coarse-grid right-hand side fH possesses 

the same telescopic property as the fine-grid right-hand side fh has. This means that it is composed of 

flux contributions through the control volume boundary, and for a pair of neighboring control volumes the 

contributions from fluxes through the common interface cancel one another. Therefore, by summing up the 

source terms fH on the coarse grid we again arrive at the total flux through the outer faces of the control 

volumes centered at the nodes of the J-th gridline, i.e., the quantity J2m=o Gm J+I/2> 
see f°rmula (2-43), 

(the index J refers here to the coarse grid) in the same way as we have done that on the fine grid. 

As the pressure in an incompressible flow problem is defined only up to an additive constant, the 

uniqueness of the solution is achieved by keeping its value fixed and equal to an initially prescribed quantity 

at one of the nodes on the coarsest grid throughout the entire computation. 

We should also mention that another way of implementing the non-local ABCs, which has not been 

actually tried yet, consists of using relation (2.44) to actually eliminate the ghost cells and thus solve 

iteratively only for the variables on the original grid. The properties of the ABCs' matrix T obtained 

in Section 2.2.1, see the discussion right after formula (2.37), may then help to establish and analyze the 

properties of the overall system matrix from the standpoint of convergence and convergence rate of the 

(multigrid) iterations. 

3.  Numerical experiments. 

3.1. Test problems. One test problem considered here is the incompressible, irrotational flow around 

a symmetric airfoil. A circular cylinder is transformed into an airfoil by the Kärmän-Trefftz transformation, 

*+2 „feip (3J) 
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where £ is the complex coordinate in the circle plane, z is the complex coordinate in the physical plane, 

and e is the trailing-edge angle. The cylinder in the £-plane is centered at C = (-0.1,0) with a radius of 1.1. 

The trailing edge angle e is 10°. This generates an airfoil with a thickness ratio of approximately 15% in 

the 2-plane. 
The grids are generated by using a uniform azimuthal spacing around the cylinder in the C-plane. The 

spacing in the radial direction is stretched such that the cell aspect ratio is equal to one everywhere. The 

dimensions of the grids that we have used are given in the next section, see Table 3.1. 

Besides the airfoil flow, and primarily for the reasons of comparing the numerical performance for 

different geometries, we have also calculated an irrotational flow around a circular cylinder. This is the same 

cylinder as the one we substituted into the transformation (3.1) to obtain the Kärmän-Trefftz airfoil. Thus, 

for the cylinder case the planes z and ( coincide and the flow around the cylinder is calculated on the actual 

polar grid. 
Only non-lifting solutions are considered hereafter for both the airfoil and cylinder, so the freestream 

flow is aligned with the rc-direction. 

3.2. Computational setting. The actual dimensions and approximate geometric sizes of the grids 

that we have used for our calculations are presented in Table 3.1. 

TABLE 3.1 
Grid dimensions and sizes 

Grid dimension: angular x radial 129 x 129 129 x 65 129 x 33 129 x 17 129x9 

Approximate    location   of   the 
outer boundary for the cylinder 
case measured in diameters 

272.5 11.5 2.5 1.1 0.75 

Approximate    location   of   the 
outer boundary for the airfoil 
case measured in chords 

135 6 1.25 0.55 0.37 

Approximate locations of the boundary in Table 3.1 are given with respect to the center of the cylinder (i.e., 

circle) or airfoil; in the latter case the location closest to the airfoil surface is presented. 

On each grid shown in Table 3.1 we have calculated a non-lifting incompressible inviscid flow with a given 

free-stream speed. The discrete flow solution is calculated by applying multigrid iterations to the elliptic 
part of the factorized system (pressure) and using a downstream marching algorithm for the advection part 

(velocities), see Section 2.3. We employ a full approximation scheme (FAS) multigrid W(2,l) cycle, with 

full weighting restriction and full coarsening [10]. The number of nested grids for each computation is 
determined by the dimension of the finest grid (see Table 3.1), i.e., the number of possible subdivisions by 

two. On the coarsest grid we find the "exact" solution by performing sufficiently many relaxation sweeps. 

For a pure Laplace or Poisson equation on the grids of the kind presented in Table 3.1, the smoothing rate 

for a lexicographic Gauss-Seidel relaxation is 0.5 per one sweep [10]. Therefore, for a W(2,l) cycle the 

"predicted" or ideal convergence rate is 0.5(2+1) = 0.125 per cycle, i.e., the residual should drop by a factor 

of 1/8 in a single multigrid cycle. 

Actually, we have calculated two types of flow solutions. First, we were solving for the pressure only 
while keeping the velocity field frozen on the grid with the values taken from the exact solution. Next, we 

solved the full Euler system as well. The ideal convergence rate of about 0.125 per cycle was indeed observed 
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in our computations when we were solving for the pressure only, see Section 3.3. As concerns the true Euler 

solution, if we were to fully separate the elliptic and hyperbolic factors in the Euler equations, we should have 

seen the exact same convergence rate. In fact, we observed a somewhat slower convergence when solving the 

full Euler equations, see Section 3.4. The reason for the discrepancy is not related to the treatment of the 

external artificial boundary as the slowdown takes place for all three types of the ABCs that we employ, see 

below. Convergence deterioration that we observe is rather caused by the following. It has been mentioned in 
Section 2.1 that the subprincipal terms in this equation can be disregarded when constructing the relaxation 

scheme. However, near the stagnation point this may be not legitimate. A possible implication of this, i.e., 

loss of efficiency, is discussed in the recent paper [16]. 

For each variant of the computation (determined by the geometry and the grid, see Table 3.1), we have 

used three types of external ABCs. The first boundary conditions are of the Dirichlet type for all three 

flow quantities, the actual data to specify at the outer boundary are taken from the available exact solution. 

This is apparently the best possible treatment for the artificial boundary and henceforth these ABCs will 

be referred to as exact. The second boundary conditions are global ABCs described in Section 2.2, hereafter 

they will be referred to as global. Finally, the third boundary conditions are local; they are set as follows. 
In the course of the relaxation procedure, the residuals of the pressure equation are evaluated near the 

dp 
outer boundary on "halves-cells" using the condition —— = 0, where n is the normal direction to the 

"n outer 
boundary. Besides, at each point on the outer boundary we specify the flow angle, which is approximately 

taken to be equal to that at infinity (i.e., to the angle of attack). Finally, to calculate the magnitude of 
the velocity, we use the conservation of the total pressure and the corresponding value of the static pressure 

that has just been updated. The local approach is obviously the simplest of the three in the sense that local 

ABCs are easier to construct and implement than the global ones and at the same time they can be used 

when the exact solution is not available. 

The purpose of conducting the foregoing series of computations on different grids (see Table 3.1) with 

different ABCs' is to compare the multigrid convergence rates as they depend on the type of ABCs and 
domain size. We will also be comparing the accuracy of the numerical solutions as it depends on the domain 
size and the type of the ABCs. These two characteristics — convergence rate (i.e., numerical efficacy) and 
accuracy — are obviously of the foremost importance when designing any numerical algorithm. 

Since the solutions that we have calculated develop neither lift nor drag, the accuracy is assessed not 
by examining integral characteristics of the flow, like lift and drag coefficients (as typical for many CFD 
studies), but rather by comparing the actual error profiles for different flow quantities. 

3.3. Solving for the pressure only. In this section we describe and analyze the numerical results 

for two cases — non-lifting flow past a circular cylinder and non-lifting flow past an airfoil. As has been 

mentioned, the velocity field on the grid for this series of computations is considered known, we actually 
take it from the exact solution obtained using classical complex variable technique. 

3.3.1. Circular cylinder. In Figure 3.1 we present the results obtained with the exact far-field ABCs, 
both convergence history and surface pressure error, for the flow past a circular cylinder. In Figures 3.2 and 

3.3 we present similar results obtained with the global and local far-field ABCs, respectively. 

From Figures 3.1(a) and 3.2(a) one can easily conclude that for the exact and global ABCs we have been 
able to obtain the multigrid convergence rate according to the theoretical prediction — roughly one order of 

magnitude reduction of the pressure residual per one W(2,l) multigrid cycle. As concerns local ABCs, from 

Figure 3.3(a) we see that the same is true only for the sufficiently large grids, 129 x 129 and 129 x 65, and 
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consequently, large domains, see Table 3.1, whereas for smaller domains the convergence slows down. 

Circular cylinder, exact boundary condition for pressure 

_r 

10 15 
W(2,1) cycles 

Circular cylinder, exact boundary condition for pressure 

(A) Convergence history (B) Surface error 

FIG. 3.1. Computation of the flow past a circular cylinder using exact ABCs. 

Circular cylinder, global boundary condition for pressure 

 B   129x129 grid 
 & -    129x65 grid 
-••V—    129x33 grid 

O 129x17grid 
— -e—  129x9 grid 

-1—I—I—I—I—I I I I I— 
5 10 15 

W(2,1) cycles 

Circular cylinder, global boundary condition for pressure 

_ 102 r 

 129x9 grid 

(A) Convergence history (B) Surface error 

FIG. 3.2. Computation of the flow past a circular cylinder using global ABCs. 

To assess the accuracy we compare the profiles of the relative error in pressure (we can calculate it 
explicitly as the exact solution is known) on the surface of the cylinder. Figures 3.1(b) and 3.2(b) show 
that for the exact and global ABCs this relative error is always below the 10~2 level, i.e., 1%, for all grids. 

For the local ABCs the accuracy level better than 1% can be obtained again only for the two largest grid 

dimensions, 129 x 129 and 129 x 65. With the reduction of the grid dimension and, accordingly, domain size 
(see Table 3.1), the accuracy deteriorates and eventually reaches the value 0(1) for the smallest grid 129 x 9, 
see Figure 3.3(b). Besides, Figure 3.3(b) shows that for the smaller domains (129 x 17 and 129 x 9) the flow 

develops some spurious non-physical asymmetries. Indeed, the two close lines of the same dash pattern on 
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Figure 3.3 (b) correspond to the error profiles on the upper and lower surfaces of the cylinder for a particular 

grid. Theoretically, these two lines should be indistinguishable, which is the case for the larger domains; the 

actual discrepancy that we observe for the smaller domains indicates the presence of asymmetry. 

Circular cylinder, local boundary condition for pressure 

  129 »129 grid 
- -A - 129x65 grid 
-■■?-- 129x33 grid 

O 129x17grid 
— ■&— 129x9 grid 

10 15 
W(2,1) cycles 

Circular cylinder, local boundary condition for pressure 

— W' 

(A) Convergence history (B) Surface error 

FIG. 3.3. Computation of the flow past a circular cylinder using local ABCs. 

Summarizing for this case, we see that the exact and global ABCs perform equally well for domains of 

all sizes, whereas the performance of the local ABCs noticeably degrade with the shrinkage of the domain. 

3.3.2. Kärmän-Trefftz airfoil. In Figure 3.4 we present computational results obtained with the 

exact far-field ABCs, both convergence history and surface pressure error, for the non-lifting flow past a 

Kärmän-Trefftz airfoil with the 10° trailing edge angle. In Figures 3.5 and 3.6 we present similar results 

obtained with the global and local far-field ABCs, respectively. 

Karman-Trefftz airfoil, 10° trailing edge angle 
exact Dirichlet boundary condition for pressure 

 B  129x129 grid 
- -& - 129x65grid 
— ■■*■ — ■ 129x33 grid 

■0 129x17grtd 
-0-— 129x9 grid 

10 
W(2,1) cycles 

10' F- 

Karman-Trefftz airfoil, 10 trailing edge angle 
exact Dirichlet boundary condition for pressure 

— 10" 

(A) Convergence history (B) Surface error 

FIG. 3.4. Computation of the flow past an airfoil using exact ABCs. 

28 



Karman-Trefftz airfoil, 10° trailing edge angle 
global boundary condition for pressure 

129x129 grid 
129x65 grid 
129x33 grid 
129x17 grid 

- ■&—   129x9 grid 

e-e-e--e--e--e--e--e-e-e-e~© 
.<>....0...<,....<>-<>.-O....O...O....O...0...O 

■&--*?•■*?■■*?--?--?--*?■-V--V 

10 
W(2,1) cycles 

10V 
Karma n-Trefftz airfoil, 10° trailing edge angle 

global boundary condition for pressure 

(A) Convergence history (B) Surface error 

FlG. 3.5.  Computation of the flow past an airfoil using global ABCs. 

Karma n-Trefftz airfoil, 10° trailing edge angle 
local boundary condition for pressure 

■ 129x129 grid 
-6 - 129x65grid 

--V  129 x33 grid 
■O 129x17grid 

--6-— 129x9grid 

W(2,1) cycles 

Karman-Trefftz airfoil, 10° trailing edge angle 
local boundary condition for pressure 

— 10-1 

(A) Convergence history (B) Surface error 

FlG. 3.6.  Computation of the flow past an airfoil using local ABCs. 

As concerns multigrid convergence rate in this case, from Figures 3.4(a) and 3.6(a) we see that for the 

exact and local ABCs, respectively, we have been able to recover it according to the theoretical prediction 
(Section 3.2). The multigrid convergence rate for global ABCs, see Figure 3.5(a), is also obtained according 

to the theoretical prediction — about one order of magnitude reduction of the residual level per one W(2,l) 

multigrid cycle, but for smaller grids the residual never reaches the machine zero. Instead, starting from some 

level specific for each grid, the convergence curve "flattens" and the residual does not drop any further, see 
Figure 3.5(a). We postpone the discussion of why, in our opinion, this phenomenon occurs till Section 3.3.3. 

Now we only emphasize that the level at which the residual flattens, see Figure 3.5(a), is well below (several 
orders of magnitude) the truncation error level for all the cases that we have studied. Therefore, we do not 

expect that this phenomenon will affect the final accuracy of the solution in any respect. 
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Indeed, for the exact boundary conditions the accuracy for all grids is about ~ 10~4, see Figure 3.4(b), 

except in the small areas near the leading and trailing edges. In these areas we are, in fact, encountering the 

well recognized problems with the approximation. Indeed, at the trailing edge, the conformal mapping that 

we use for generating the grid has a singularity, therefore the surface normal is not well defined there. Instead 
of accounting for this singularity analytically when developing the discretization we effectively "ignore" it 

and apply the nontranspiration boundary condition by evaluating the surface normal at the trailing edge 
in the same way as we do over the rest of the of the airfoil surface, by finite differences of the surface 

coordinates. At the leading edge, the numerical viscosity apparently dominates the behavior locally, so there 

is an artificial dissipative error that corrupts the total pressure. However, the latter problems have no direct 

relation to the treatment of the outer boundary, which is the subject of the current study. 

Comparing the accuracy provided by the exact ABCs to the one that we obtain with the global ABCs, 

i.e., comparing Figures 3.4(b) and 3.5(b), we see that for the first three grids, 129 x 129, 129 x 65, and 

129 x 33, global ABCs provide for the same accuracy as the exact ones do, i.e., about 10~4. For the next 

smaller grid, 129 x 17, the accuracy with the global ABCs is ~ 10-3, and for the smallest grid 129 x 9 this 
accuracy is ~ 10~2. Thus, it turns out that in terms of accuracy global ABCs perform somewhat worse than 
the exact ones on small computational domains (see Table 3.1) for this airfoil case. It is clear, however, that 
the accuracy that we do recover with the global ABCs, see Figure 3.5(b), is still acceptable for all purposes. 

We also note that the exact ABCs are obviously not available in realistic situations, while global ABCs can 

be constructed, e.g., on the basis of the difference potentials method, see [21]. 

One might think that the slowdown of convergence that we observe for global ABCs on the smaller grids, 

see Figure 3.5(a), and the slight deterioration of accuracy that we also observe for these boundary conditions 
on the smaller grids, see Figure 3.5(b), could be related to one another. We claim that this is, in fact, not 
so, because for the local ABCs that do provide in this case for the optimal convergence till the machine zero 

on all grids, see Figure 3.6(a), the accuracy rapidly deteriorates as the domain shrinks, see Figure 3.6(b), 

and reaches the level ~ 10"1, i.e., 10%, for the smallest grid 129 x 9. 

Summarizing for the airfoil case, we see that the global ABCs actually perform only slightly worse than 
the exact ones and their accuracy is certainly within the practically acceptable limits on all grids, whereas 

the solutions obtained with the local ABCs rapidly lose accuracy as the domain size reduces. 

3.3.3. Comparison of the cylinder and airfoil computations. The first easy observation that one 

can make is that on the average the relative accuracy for the Kärmän-Trefftz airfoil is better than that for 
the circular cylinder for all the computations that we have conducted, see Figures 3.1(b) — 3.6(b). With no 

rigorous explanation we can attribute this to the mere fact that in some sense a "thick" cylinder introduces 

more of a perturbation into the flow that a "thin" airfoil does (the thickness ratio of the airfoil is 15%, 

see Section 3.1). The same fact apparently accounts for the slowdown of multigrid convergence on smaller 
domains when computing the flow past a cylinder with local ABCs, see Figure 3.3(a), whereas the same 

local ABCs for the airfoil still provide for the optimal multigrid convergence rate, see Figure 3.6(a). We 
emphasize here that the convergence slowdown on Figure 3.3(a) (local ABCs for the cylinder) is different in 

nature to the one on Figure 3.5(a) (global ABCs for the airfoil) because in the latter case we do recover the 
optimal convergence rate and lose it only toward the end of the computation, when the residuals are already 

sufficiently small, and in the former case the convergence is suboptimal from the very beginning. 

The phenomenon of "flattening" of the residuals for global ABCs, see Figure 3.5(a), can apparently 
be attributed to the following. The boundary conditions have actually been constructed on the conformal 

plane £, where the body is always a cylinder and the grid is always exactly polar, which, in particular, 
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means orthogonal. In Sections 2.1 and 2.2.1 we have addressed the importance of maintaining the exact 

conservation on the grid from the standpoint of solvability and also shown (see equations (2.40) and (2.43)) 

how to maintain the exact conservation on this particular grid, i.e., grid of polar coordinates. For the flow 

around the airfoil the discretization is built directly using finite volumes on the actual grid in the physical 
plane. For small domains, this grid may have slight numerical deviations from orthogonality even near the 

outer boundary. This, in turn, results in a slightly different discrete operator. (As has been mentioned in 

Section 2.2.1, in contrast to (2.28) it may contain diagonal nodes with small coefficients.) This may give rise 

to a minor violation of the overall conservation on the grid, the smaller the domain, the larger the violation. 

(Indeed, the left-hand side of (2.40) and (2.43) has to have this particular form to be incorporated into 

the boundary conditions, and the conservation will now be achieved with a different operator.) This small 

"incompatibility" is responsible for the flattening of the convergence history curve (i.e., residual level vs. 

number of multigrid cycles, see Figure 3.5(a)). A similar phenomenon was observed in [13] when solving a 

Neumann problem, for which the solvability condition was satisfied exactly for the continuous formulation, 

while only up to the truncation error level for the discrete formulation. 

3.4. Solving the Euler system. Let us first note that in the framework of the full Euler system we 
are computing only the flow around the airfoil. The cylinder case analyzed in Section 3.3 can, in fact, be 

used only for the pure pressure computations. It is not suitable for the full Euler equations because the 
artificial dissipation of the scheme will result in flow separation. This effect is, again, due to the "thickness" 

of the cylinder. 

In Figure 3.7 we present convergence histories on all grids for all three types of the ABCs. As one can 
see, the convergence in all cases is somewhat slower than the theoretically predicted rate of 0.125 per one 

W(2,l) cycle that we use. The slowdown of the multigrid convergence that we observe here is obviously 

not related to the treatment of the artificial external boundary because it takes place for all three types 

of the ABCs. As mentioned in Section 3.2, this slowdown is most likely related to the apparently invalid 
omission of subprincipal terms near the stagnation point in the construction of the relaxation scheme. This 

issue is discussed in [16]. We also emphasize that for the local ABCs, see Figure 3.7(c), the convergence 
is noticeably slower than for the other two types, see Figures 3.7(a) and 3.7(b), and for the smallest grid 
129 x 9 the solution with local ABCs does not converge at all. That's why we have only four curves (as 

opposed to five) plotted on Figure 3.7(c). 

In Figure 3.8 and 3.9, we are showing the surface pressure error profiles for all five grids and three types 
of the ABCs that we have used. As has been mentioned, the solution with local ABCs on the smallest grid 

129 x 9 did not converge, therefore the corresponding error curve is not available. (Note, as opposed to 
Section 3.3, here we present separate error profile plots for each grid and all three types of the ABCs, i.e., 

have three curves per plot, rather than showing five curves from all five grids on one plot for each geometry 

and each type of ABCs.) 

Figures 3.8 and 3.9 allow one to conclude that for the exact ABCs the surface pressure error is always 

below the 10~2 level, for global ABCs it is also below than 10~2, except for the smallest domain, for which 

it is only slightly above the level of 10~2, i.e., 1%. For local ABCs the accuracy rapidly deteriorates with 
the domain size decrease and eventually reaches 0(1) on the grid of moderate dimension 129 x 17 before the 

solution breaks on the smallest grid 129 x 9. 

As opposed to Section 3.3, here we are computing all three flow quantities rather than only pressure. 
Therefore, we also compare error profiles for velocities. In Figure 3.10 we present velocity errors for the 

smallest grid, on which all three solutions converged, i.e., for the grid 129 x 17. Figure 3.10(a) shows that 
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FIG. 3.7.  Convergence histories for the flow past an airfoil computed in the framework of the full Euler equations. 

both the exact and global ABCs perform equally well for the surface velocity (the error is slightly above 
10~2) and the solution obtained with local ABCs substantially lacks accuracy. At the outer boundary, see 

Figure 3.10(b), global ABCs provide for the error level below 10-2, whereas local ABCs are lagging behind 

by roughly two orders of magnitude. 

Note, we do not present the error curve for the exact ABCs on Figure 3.10(b) because the Dirichlet data 
for these boundary conditions are taken from the exact solution and thus the corresponding error would have 

been identically equal to zero. 

Summarizing for the full Euler airfoil case, we see that global ABCs are almost as good as the exact ones 
in terms of both the solution accuracy and multigrid convergence rate. As concerns global vs. local ABCs, 

from Figures 3.7, 3.8, 3.9, and 3.10 we conclude that global ABCs clearly outperform the local ones from 

the standpoints of accuracy, convergence rate, and robustness. Accuracy-wise, they allow to reduce the grid 
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dimension by a factor of 8-16 with no or very little increase in error and with the obvious corresponding 

reduction in computational costs — this is the primary result that we have expected. Regarding the robust- 

ness, global ABCs provided for the convergence on the smallest grid 129 x 9, when the algorithm with local 

ABCs simply failed to converge. 

Surface pressure error for Karman-Trefftz airfoil, 
10° trailing edge angle, 129 x 129 grid 
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FIG. 3.8. Surface pressure error profiles for the flow past an airfoil computed in the framework of the full Euler equations. 

4. Discussion and conclusions. Motivated by the two independent successful developments in CFD 
that have appeared recently: The new factorizable schemes for the equations of hydrodynamics that facilitate 

the construction of optimally convergent multigrid algorithms, and highly accurate global far-field artificial 
boundary conditions, we have built and tested a unified methodology for calculating incompressible flow 

solutions based on the combination of the two aforementioned approaches. The primary result that we have 
obtained is the following. Global ABCs do not hamper the optimal (i.e., unimprovable) multigrid convergence 

rate pertinent to the solver. At the same time, contrary to the standard local ABCs, the solution accuracy 

provided by the global ABCs deteriorates very slightly or does not deteriorate at all when the computational 

domain shrinks, which clearly translates into substantial savings of computer resources. 
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Surface pressure error for Karman-Trefftz airfoil, 
10° trailing edge angle, 129x9 grid 
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FlG. 3.9. Surface pressure error profiles for the flow past an airfoil computed in the framework of the full Euler equations. 

Speed error at surface for Karman-Trefftz airfoil, 
10° trailing edge angle, 129 x 17 grid 
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Speed error at outer boundary for Karman-Trefftz airfoil, 
10° trailing edge angle, 129x17 grid 

101 

3 
CT10"1 

Id'2 

Global boundary condition 
Local boundary condition 

(B) On the outer boundary 

FIG. 3.10.  Velocity error profiles for the flow past an airfoil computed in the framework of the full Euler equations on the 

129 X 17 grid. 

The combined methodology was developed for the most simple formulation of both the factorizable 

scheme and the ABCs: the so-called pressure Poisson scheme, and the ABCs built semi-analytically using 
the separation of variables along the artificial boundary. The methodology was tested on a class of incom- 
pressible inviscid non-lifting two-dimensional flows with the exact solutions readily available through the 

implementation of the classical complex variable technique. On one hand, this intentionally elementary for- 
mulation (both theoretically and experimentally) allows to use the analytical approaches and results as much 

as possible for both constructing the methodology and numerically assessing its performance. On the other 
hand, this formulation still keeps the key fundamental principles, on which both the factorizable scheme 
and global ABCs are based, and thus should be regarded not as an isolated model example but rather as a 
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foundation of the future approaches to more complex problems. 

In a series of numerical tests (Section 3) we have compared three types of the ABCs: Exact Dirichlet 

ABCs obtained from the exact analytical solution, global ABCs, and standard local ABCs of the kind that 

is used extensively and routinely nowadays when neither the exact data nor any advanced methodology is 
available. From our computations we can conclude that convergence-wise, global ABCs perform practically 

as good as the exact ones; in other words they recover the optimal multigrid convergence rate that cannot be 

improved. Prom the standpoint of accuracy, they allow for a very substantial reduction of the computational 

domain size, two orders of magnitude in terms of the actual diameter and at least one order of magnitude in 
terms of the grid dimension, with no or very little deterioration in the final quality of the calculated solution. 

This obviously yields a considerable reduction in the corresponding computational costs, which altogether 

constitutes the primary result that we have expected. 
The aforementioned reduction in the computational domain size is obtained when comparing the per- 

formance of the global ABCs with that of the standard local boundary conditions. We should emphasize 
here that as the exact ABCs are not attainable routinely, the comparative assessment of global and local 

methodologies is of the foremost importance from the viewpoint of computational practice. Our numerical 
experiments show that besides the solution accuracy, global ABCs clearly surpass the local ones from the 
standpoints of multigrid convergence rate and robustness. (The latter point refers to the case when global 
ABCs could provide for convergence while the local ones diverged.) A similar kind of behavior has been 

observed previously for the global DPM-based ABCs combined with the older suboptimal multigrid method- 
ologies [21,25-27,30-33]. As at the moment different flavors of local boundary conditions still dominate the 

area of production computations in CFD, the new combined technique developed and tested in this paper 

provides a potential for creating new flow solvers far superior to those currently in use. 
An important implementation lesson learned when building the unified methodology is that the inho- 

mogeneities in the elliptic factor of the system have to be handled very carefully. In particular, the exact 

conservation on the grid has to be strictly enforced to guarantee the solvability of the discrete problem. 

Let us note that the actual inhomogeneity of the pressure Poisson equation that we have studied in this 
paper is not going to be encountered in the future because the forthcoming factorizable scheme for the 

incompressible case will be based on the Laplace equation for the velocity potential as an elliptic factor 

(always homogeneous). On the other hand, the current study provides foundation for treating the compress- 
ible flow equations, in which the full-potential part will always involve far-field inhomogeneities due to the 

sub-principal terms. The boundary conditions for this equation will be the same as those we have studied 

here: Neumann's boundary condition on the solid wall and requirement of boundedness of the solution at 
infinity. Therefore, the conclusions of the current study, in particular those related to the solvability issues, 

are going to be useful. 
Our future plans involve extensions along both experimental and theoretical lines. Numerically, we will 

incorporate a different formulation of the scheme and study more complex cases, including compressible 
flows. Theoretically, we will try and analyze the properties of the discrete ABCs' operator (a generalization 

of the operator T, see (2.35) and (2.37)) in terms of the influence it may exert on multigrid convergence, 
e.g., whether the matrix of the corresponding overall system that is solved by iterations may appear either 

symmetric positive definite or an M-matrix (see [41] for the definition of the latter). Global ABCs for 
the more complex cases that we plan on studying in the future will be obtained using difference potentials 

method. 
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